[image: ]

Object-Oriented Python Programming
Course Number: PYTH-270
Duration: 3 days
Overview
This Python Programming training course teaches attendees with Python experience how to leverage object-oriented programming (OOP) using the Python language. The class starts with a quick review of Python classes and then dives into the core principles and practices of OOP, including design patterns.
Prerequisites
All students must be able to comfortably write Python scripts using basic data types, program structures, and the standard Python library.
Materials
All Python training students receive comprehensive courseware.
Software Needed on Each Student PC
· Any Windows, Linux, or Mac OS X operating system
· Standard Python 3.x or Anaconda Python 3.x
· Visual Studio Code (other editors may be used)
Objectives
· Understand the fundamental concepts of Object-Oriented Programming (OOP)
· Review Python basics on class definitions
· Implement OOP principles and practices in Python
· Explore the principles of SOLID and explore how they impact Python program design
· Apply numerous object-oriented design patterns
Outline
· Introduction
· Development Environment (Very Quick Overview) 
· Configure VS Code for Python development
· Code Reformatting with Black
· Debugging Python Scripts with VS Code
·  
· Getter/Setter Properties
· Quick Class Review 
· Defining a Class
· Instance and Class Members
· Inheritance
· Multiple Inheritance
· Principles and Practical Object-Oriented Programming 
· Encapsulation
· Polymorphism
· Inheritance
· Composition
· Shared Variable Context for Functions
· SOLID Programming 
· Single Responsibility Principle
· Open-Closed Principle
· Liskov Substitution Principle
· Interface Segregation Principle
· Dependency Inversion Principle
· Component Design 
· Component Cohesion
· Component Coupling
· Overview of Creational Design Patterns 
· Abstract Factory
· Factory
· Builder
· Prototype
· Singleton
· Overview of Behavioral Design Patterns 
· Chain of Responsibility
· Command
· Interpreter
· Iterator
· Mediator
· Observer
· Strategy
· Memento
· State
· Template Method
· Visitor
· Overview of Structural Design Patterns 
· Adapter
· Bridge
· Composite
· Decorator
· Façade
· Flyweight
· Proxy
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®




