[image:]

Comprehensive Flutter
Course Number: FLTR-104
Duration: 5 days
Overview
Accelebrate’s Comprehensive Flutter training teaches the hands-on programming skills needed to successfully build basic and robust Flutter applications. Attendees start out by learning how to use the Dart programming language, debug Flutter, create custom widgets, layout a screen, and respond to gestures. Then students take a deeper dive into more advanced skills including how to implement responsive design, style widgets, manage state, make RESTful API calls with HTTP/HTTPS, and more.
Prerequisites
Experience in another object-oriented programming language like Java, C#, or C++.
Materials
All Flutter training attendees receive comprehensive courseware.
Software Needed on Each Student PC
· Google Chrome
· Other modern browsers as desired
· IDE/development environment of your choice
· Other free software and lab files that Accelebrate would specify
Objectives
· Write a cross-platform app that will run on any of the 5 billion iOS/Android cell phones in the world, as well as in browser and desktop environments
· Develop and debug Flutter apps
· Leverage the elegance of the Dart programming language in Flutter apps
· Apply themes and styles
· Write custom widgets
· Respond to gestures like taps, swipes, and pinches
· Precisely control the layout of apps in a responsive way
· Handle form data entry from users
· Make multiscreen apps with navigation, menus, and tabs
· Use Flutter to read and write data from an online RESTful API
· Find and include 3rd party libraries
Outline
· Introduction
· Hello Flutter
· What is Flutter?
· Why Flutter?
· The other options
· Native solutions
· Dart Language Overview
· What is Dart?
· Expected features – Dart Cheatsheet
· Data types, Arrays/lists
· Classes
· Conditionals and loops
· Unexpected things about Dart
· Type inference
· final and const
· String interpolation with $
· Spread operator
· Map<foo, bar>
· Functions are objects
· Big arrow/Fat arrow
· Named function parameters
· Omitting “new” and “this.”
· Class constructor parameter shorthand
· Private class members
· Mixins
· The cascade operator (..)
· No overloading
· Named constructors
· Developing in Flutter
· The Flutter toolchain
· The Flutter SDK
· IDEs
· IDE DevTools
· Emulators
· Keeping the tools up to date
· The Flutter development process
· Scaffolding the app and files
· Running your app
· Everything Is Widgets
· UI as code
· Built-in Flutter widgets
· Value widgets
· Layout widgets
· Navigation widgets
· Other widgets
· How to create stateless widgets
· Widgets have keys
· Passing a value into your widget
· Stateless and Stateful widgets
· So which one should I create?
· Value Widgets
· The Text widget
· The Icon widget
· The Image widget
· Embedded images
· Network images
· Sizing an image
· Input widgets
· Text fields
· Putting the form widgets together
· Form widget
· FormField widget
· One big Form example
· Responding to Gestures
· Meet the button family
· RaisedButton
· FlatButton and IconButton
· FloatingActionButton
· CupertinoButton
· Dismissible
· Custom gestures for your custom widgets
· Reacting to a long press
· Pinching to add a new item
· Swiping left or right
· The gesture arena
· Laying Out Your Widgets
· Laying out the whole scene
· MaterialApp widget
· The Scaffold widget
· The AppBar widget
· SafeArea widget
· SnackBar widget
· How Flutter decides on a widget’s size
· The dreaded “unbounded height” error
· Flutter’s layout algorithm
· Putting widgets next to or below others
· Your widgets will never fit!
· What if there’s extra space left over?
· mainAxisAlignment
· crossAxisAlignment
· Expanded widget
· What if there’s not enough space?
· The ListView widget
· Container widget and the box model
· Alignment and positioning within a Container
· So how do you determine the size of a Container?
· Special layout widgets
· Stack widget
· GridView widget
· The Table widget
· Navigation and Routing
· Stack navigation
· Navigating forward and back
· Get result after a scene is closed
· Drawer navigation
· The Drawer widget
· Filling the drawer
· Tab Navigation
· TabController
· TabBar and Tabs
· The Dialog widget
· showDialog() and AlertDialog
· Responses with a Dialog
· Navigation methods can be combined
· Styling Your Widgets
· Thinking in Flutter Styles
· A word about colors
· Styling Text
· TextStyle
· Custom fonts
· Container decorations
· Border
· BorderRadius
· BoxShape
· Stacking widgets
· Positioned widget
· Card widget
· Themes
· Applying theme properties
· Managing State
· What is state?
· What goes in a StatefulWidget?
· The most important rule about state!
· Passing statedown
· Lifting state backup
· An example of state management
· When should we use state?
· Advanced state management
· InheritedWidget
· BLoC
· ScopedModel
· Hooks
· Provider
· Redux
· Your Flutter App Can Work with Files
· Including libraries in your Flutter app
· Finding a library
· Adding it to pubspec.yaml
· Importing the library
· Using the library
· Futures, async, and await
· Why would it wait?
· await
· async
· Including a file with your app
· Writing a file
· And reading it!
· Using JSON
· Writing your app’s memory to JSON
· Reading JSON into memory
· Shared preferences
· To write preferences
· To read preferences
· Making RESTful API Calls with HTTP
· The flavors of API requests
· Making an HTTP GET or DELETE request
· Making an HTTP PUT, POST, or PATCH request
· HTTP responses to widgets
· Brute force – The easy way
· FutureBuilder – The clean way
· Strongly typed classes
· Create a business class
· Write a fromJSON() method
· Use fromJSON() to hydrate the object
· One big example
· A GET request in Flutter
· A DELETE request in Flutter
· A POST and PUT request in Flutter
· Using Firebase with Flutter (time permitting)
· Introducing Firebase
· Cloud Firestore
· Cloud Functions
· Authentication
· Setting up Firebase itself
· Creating a Firebase project
· Creating the database
· Creating an iOS app
· Creating an Android app
· Adding FlutterFire plugins
· Using Firestore
· To get a collection
· To query
· To upsert
· To delete
· Where to go from here
· Conclusion

Copyright ©2003-2024 Accelebrate, LLC. Some outlines may contain content from our courseware partners; such content is protected by these partners' copyrights. All trademarks are owned by their respective owners.
image1.png
Accelebrat&%g

ACCELERATED LEARNING, CELEBRATED RESULTS ®

