Comprehensive Machine Learning with Python

102 Ratings

Course Number: PYTH-126

Duration: 4 days (26 hours)

Format: Live, hands-on

Machine Learning with Python Training Overview

Accelebrate's private, onsite or online Comprehensive Machine Learning with Python training course builds on our Comprehensive Data Science with Python class and teaches attendees how to write machine learning applications in Python.

Location and Pricing

Accelebrate offers instructor-led enterprise training for groups of 3 or more online or at your site. Most Accelebrate classes can be flexibly scheduled for your group, including delivery in half-day segments across a week or set of weeks. To receive a customized proposal and price quote for private corporate training on-site or online, please contact us.

Objectives

  • Understand machine learning as a useful tool for predictive models
  • Know when to reach for machine learning as a tool
  • Implement data preprocessing for an ML workflow
  • Understand the difference between supervised and unsupervised tasks
  • Implement several classification algorithms
  • Evaluate model performance using a variety of metrics
  • Compare models across a workflow
  • Implement regression algorithm variations
  • Understand clustering approaches to data
  • Interpret labels generated from clustering
  • Transform unstructured text data into structured data
  • Understand text-specific data preparation
  • Visualize frequency data from text sources
  • Perform topic modeling on a collection of documents
  • Use labeled text to perform document classification

Prerequisites

All attendees should have completed the Comprehensive Data Science with Python class or have equivalent experience.

Outline

Expand All | Collapse All

Review of Core Python Concepts
  • Anaconda Computing Environment
  • Importing and manipulating Data with Pandas
  • Exploratory Data Analysis with Pandas and Seaborn
  • Numpy ndarrays versus Pandas Dataframes
An Overview of Machine Learning
  • Machine Learning Theory
  • Data pre-processing
    • Missing Data
    • Dummy Coding
    • Standardization
    • Data Validation Strategies
  • Supervised Versus Unsupervised Learning
Supervised Learning: Regression
  • Linear Regression
  • Penalized Linear Regression
  • Stochastic Gradient Descent
  • Decision Tree Regressor
  • Random Forest Regression
  • Gradient Boosting Regressor
  • Scoring New Data Sets
  • Cross Validation
  • Variance-Bias Tradeoff
  • Feature Importance
Supervised Learning: Classification
  • Logistic Regression
  • LASSO
  • Support Vector Machine
  • Random Forest
  • Ensemble Methods
  • Feature Importance
  • Scoring New Data Sets
  • Cross Validation
Unsupervised Learning: Clustering
  • Preparing Data for Ingestion
  • K-Means Clustering
  • Visualizing Clusters
  • Comparison of Clustering Methods
  • Agglomerative Clustering and DBSCAN
  • Evaluating Cluster Performance with Silhouette Scores
  • Scaling
  • Mean Shift, Affinity Propagation and Birch
  • Scaling Clustering with mini-batch approaches
Clustering for Treatment Effect Heterogeneity
  • Understand average versus conditional treatment effects
  • Estimating conditional average treatment effects for a sample
  • Summarizing and Interpreting
Data Munging and Machine Learning Via H20
  • Intro to H20
  • Launching the cluster, checking status
  • Data Import, manipulation in H20
  • Fitting models in H20
  • Generalized Linear Models
  • naïve bayes
  • Random forest
  • Gradient boosting machine (GBM)
  • Ensemble model building
  • automl
  • data preparation
  • leaderboards
  • Methods for explaining modeling output
Introduction to Natural Language Processing (NLP)
  • Transforming Raw Text Data into a Corpus of Documents
  • Identifying Methods for Representing Text Data
  • Transformations of Text Data
  • Summarizing a Corpus into a TF—IDF Matrix
  • Visualizing Word Frequencies
NLP Normalization, Parts-of-speech and Topic Modeling
  • Installing And Accessing Sample Text Corpora
  • Tokenizing Text
  • Cleaning/Processing Tokens
  • Segmentation
  • Tagging And Categorizing Tokens
  • Stopwords
  • Vectorization Schemes for Representing Text
  • Parts-of-speech (POS) Tagging
  • Sentiment Analysis 
  • Topic Modeling with Latent Semantic Analysis
NLP and Machine Learning
  • Unsupervised Machine Learning and Text Data
  • Topic Modeling via Clustering
  • Supervised Machine Learning Applications in NLP
Conclusion

Training Materials

All Machine Learning with Python students receive courseware covering the topics in the class.

Software Requirements

  • Windows, Mac, or Linux with at least 8 GB RAM
  • A current version of Anaconda for Python 3.x
  • Related lab files that Accelebrate will provide


Learn faster

Our live, instructor-led lectures are far more effective than pre-recorded classes

Satisfaction guarantee

If your team is not 100% satisfied with your training, we do what's necessary to make it right

Learn online from anywhere

Whether you are at home or in the office, we make learning interactive and engaging

Multiple Payment Options

We accept check, ACH/EFT, major credit cards, and most purchase orders



Recent Training Locations

Alabama

Birmingham

Huntsville

Montgomery

Alaska

Anchorage

Arizona

Phoenix

Tucson

Arkansas

Fayetteville

Little Rock

California

Los Angeles

Oakland

Orange County

Sacramento

San Diego

San Francisco

San Jose

Colorado

Boulder

Colorado Springs

Denver

Connecticut

Hartford

DC

Washington

Florida

Fort Lauderdale

Jacksonville

Miami

Orlando

Tampa

Georgia

Atlanta

Augusta

Savannah

Hawaii

Honolulu

Idaho

Boise

Illinois

Chicago

Indiana

Indianapolis

Iowa

Cedar Rapids

Des Moines

Kansas

Wichita

Kentucky

Lexington

Louisville

Louisiana

New Orleans

Maine

Portland

Maryland

Annapolis

Baltimore

Frederick

Hagerstown

Massachusetts

Boston

Cambridge

Springfield

Michigan

Ann Arbor

Detroit

Grand Rapids

Minnesota

Minneapolis

Saint Paul

Mississippi

Jackson

Missouri

Kansas City

St. Louis

Nebraska

Lincoln

Omaha

Nevada

Las Vegas

Reno

New Jersey

Princeton

New Mexico

Albuquerque

New York

Albany

Buffalo

New York City

White Plains

North Carolina

Charlotte

Durham

Raleigh

Ohio

Akron

Canton

Cincinnati

Cleveland

Columbus

Dayton

Oklahoma

Oklahoma City

Tulsa

Oregon

Portland

Pennsylvania

Philadelphia

Pittsburgh

Rhode Island

Providence

South Carolina

Charleston

Columbia

Greenville

Tennessee

Knoxville

Memphis

Nashville

Texas

Austin

Dallas

El Paso

Houston

San Antonio

Utah

Salt Lake City

Virginia

Alexandria

Arlington

Norfolk

Richmond

Washington

Seattle

Tacoma

West Virginia

Charleston

Wisconsin

Madison

Milwaukee

Alberta

Calgary

Edmonton

British Columbia

Vancouver

Manitoba

Winnipeg

Nova Scotia

Halifax

Ontario

Ottawa

Toronto

Quebec

Montreal

Puerto Rico

San Juan